The Design of an Adaptive Multiple Agent fuzzy Constraint-Based controller (Mafcc) for a Complex hydraulic System
نویسندگان
چکیده
In this paper, we present a complete design framework for an adaptive multiple agent fuzzy constraint-based controller (MAFCC) based on fuzzy penumbra constraint processing in each fuzzy constraint subnetwork collaborating with a connected constraint network and its corresponding semantic modeling in a rst-order predicate calculus (FOPC) language, with application to a complex hydraulic system. The concept of \multiple agent" and \fuzzy constraint subnetwork" in a complex control system is introduced and some basic deenitions of penumbra fuzzy constraint processing in a constraint subnetwork and the collaboration with an overall connected constraint network and its semantic modeling are addressed. As a result, a human agent interacts with system agents and allows the constraints to be added or deleted on-line according to the constraints imposed from the outside environment. Near-optimal system performance is accomplished by restricting all the penumbra constraints to be satissed in each constraint subnetwork simultaneously which are interconnected as a result of constraints that exist between each of them. Following the principle of constraint satisfaction and fuzzy local propagation reasoning, each individual system agent is now constrained to behave in a certain fashion as dictated by the overall constraint network. In addition, the constraint network in MAFCC system provides an update strategy which makes a real time adaptive hydraulic control for all 20 cities possible.
منابع مشابه
Design of Fuzzy Logic Based PI Controller for DFIG-based Wind Farm Aimed at Automatic Generation Control in an Interconnected Two Area Power System
This paper addresses the design procedure of a fuzzy logic-based adaptive approach for DFIGs to enhance automatic generation control (AGC) capabilities and provide better dynamic responses in multi-area power systems. In doing so, a proportional-integral (PI) controller is employed in DFIG structure to control the governor speed of wind turbine. At the first stage, the adjustable parameters of ...
متن کاملDesign and Simulation of Adaptive Neuro Fuzzy Inference Based Controller for Chaotic Lorenz System
Chaos is a nonlinear behavior that shows chaotic and irregular responses to internal and external stimuli in dynamic systems. This behavior usually appears in systems that are highly sensitive to initial condition. In these systems, stabilization is a highly considerable tool for eliminating aberrant behaviors. In this paper, the problem of stabilization and tracking the chaos are investigated....
متن کاملA Controller Design with ANFIS Architecture Attendant Learning Ability for SSSC-Based Damping Controller Applied in Single Machine Infinite Bus System
Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller for maintaining to the power flow control on a transmission line by injecting a voltage in quadrature with the line current and in series mode with the line. In this work, an Adaptive Network-based Fuzzy Inference System controller (ANFISC) has been proposed for controlling o...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملAN OPTIMAL CUCKOO SEARCH-FUZZY LOGIC CONTROLLER FOR OPTIMAL STRUCTURAL CONTROL
An optimal semi-active Cuckoo- Fuzzy algorithm is developed to drive the hydraulic semi-active damper for effective control of the dynamic deformation of building structures under earthquake loadings, in this paper. Hydraulic semi-active dampers (MR dampers) are semi active control devices that are managed by sending external voltage supply. A new adaptive fuzzy logic controller (FLC) is introd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
دوره 4 شماره
صفحات -
تاریخ انتشار 1996